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Abstract

The Tremaine-Gunn bound may be used to estimate the minimum mass required
for a fermionic dark matter particle to obey the limiting condition F ≤ g

(2πh̄)3 for
phase space density F. In principle, knowledge of the matter density profile of a
dark matter dominated galaxy is enough to reconstruct a coarse grained phase

space density (also subject to this limit) using an estimate for the maximal
velocity (e.g. the escape velocity or velocity dispersion). Here, several works

proposing density profiles are explored. We can show that one of these theories,
the Ruffini-Argüelles-Rueda model, suffers from significant inconsistencies.
Finally, we discuss the Richardson-Fairbairn profiles, which result from an
extended Jeans analysis, i.e. a fitting procedure based on Jeans and Virial

equations. We apply the largely model-robust Tremaine-Gunn bound to data
generated by Read et Steger (using a variant of the Richardson-Fairbairn model)
for Local Group dwarf spheroidal galaxies and obtain a lower mass bound for a

fermionic dark matter particle: m ≥ 180+51
−43eV
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Chapter 1
Introduction

Observations of galactic dynamics suggest that the universe’s matter content is
dominated by a type of non-luminous matter. This type of matter is baptised
dark matter, with properties yet to be specified. Evidence for this theory comes
from a multitude of sources. Famously, the gravitational force exerted by lumi-
nous matter in the Milky Way cannot account for the rotational velocities of stars
in the sun’s interstellar neighbourhood. From measuring velocity dispersions in
galactic clusters, one can further conclude ( due to research by F. Zwicky [1]) that
luminous matter alone is not sufficient to keep these galaxies bound. [2] Other
observations hinting at the existence of dark matter are the small-scale structure
of the Cosmic Microwave Background, the large-scale structures of galaxies we
observe today, data from galactic collisions such as the Bullet Cluster, and gravi-
tational lensing. [3]

Figure 1.1: Photograph of the Sextans dwarf spheroidal from [4]

The total dark matter content makes up 27% of the universe’s total mass-
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8 Introduction

energy content, with luminous matter only contributing with 5%. Dark matter
cannot be observed directly, as it doesn’t partake in electromagnetic interaction.
However, it can be probed via its gravitational interaction with visible matter. [5]
A Dwarf Spheroidal Galaxy (dSph) is an appropriate point of departure when
looking for dark matter, as these types of galaxies are not very luminous and
thought to be dominated by dark matter. [6] The dSphs orbiting the Milky Way
Galaxy are listed in table 1.1. One of those Local Group (LG) dSphs is the Sextans
dwarf spheroidal, as shown in figure 1.1.

1.1 Tremaine-Gunn bound

The Tremaine-Gunn bound, after American physicists Scott Tremaine and James
E. Gunn, is commonly used to derive an estimate for the minimum mass of a
fermionic dark matter particle based on galactic phase space density considera-
tions. For fermionic dark matter, this lower bound is model robust. However,
when applied to real models some assumptions which impact its accuracy are
typically made. These limitations will be discussed in the following, alongside
the general derivation and applications of the bound.
The phase-space density F generally describes the number density of particles
within a phase-space volume d3qd3p centred around phase-space coordinates
(q, p). The Tremaine-Gunn bound, as found in [7], assumes fermionic dark mat-
ter particles with a phase space density FDM that can not exceed that of the most
densely packed, i.e. fully degenerate, Fermi gas:

FDM ≤ Fmax =
g

(2πh̄)3 (1.1)

with g as the degrees of freedom of the dark matter particle in question. This
maximum can be inferred from the maximum value for a general Fermi-Dirac
distribution. ∗

FFD(q, p) =
g

(2πh̄)3
1

e
E(p)−µ(q)

kBT(q) + 1
(1.2)

If an expression for the phase space density as a function of the dark matter
particle mass mDM is known, then inequality (1.1) can be solved to give a limit for
this mass mDM. The dark matter phase space density FDM is difficult to access in
practice. One possible estimate, as performed by Boyarsky et alii [8], introduces a
coarse-grained phase space density FDM. The coarse grained phase space density,

∗In addition to the value for Fmax given above, Boyarsky et alii [8] introduce a slightly alternative
measure: The Liouville theorem implies that the maximum of the phase-space density does not
change in time. For a relativistic primordial Fermi-Dirac distribution, Fmax then becomes g

2(2πh̄)3 ,
which, for E(p)� µ, can be inferred from equation 1.2. The resulting lower mass bound becomes
more strict by a factor of 21/4. However, this bound makes assumptions about the evolution of
the phase-space density.

8
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1.1 Tremaine-Gunn bound 9

obtained by averaging over phase space cells (see equation 1.3), may not exceed
the value for the fine-grained phase-space density FDM. This implies FDM ≤
FDM ≤ Fmax, with

FDM(p, q) =
1

vol(∆Π)

∫
∆Π(p,q)

dΠ′FDM(p′, q′) (1.3)

where averaging goes over the collective of phase space cells ∆Π(q, p), cen-
tred around the phase space coordinates (q, p). The maximally coarse-grained
phase-space density, a result of averaging over a phase space volume such that
the entire spherically symmetric galaxy’s dark matter content is contained within,
reads

FDM =
M

mDMVrsVms
=

M
(4

3 π)2R3m3
DMv3

esc
(1.4)

M denotes the galaxy’s total mass, Vrs the volume in real space, ad Vms the volume
in momentum space. The galaxy’s entire phase space volume is approximated by
vol(∆Π) = VrsVms = (4

3 π)2R3m3
DMv3

esc. The maximum velocity of a dark matter
particle was taken to be the escape velocity. Typically, M and vesc are inferred
from observation. Together with equation (1.1), this can be solved to yield:

m4
DM ≥

9Mπh̄3

2gR3v3
esc

=
9πh̄3

25/2gG3/2R3/2M1/2 (1.5)

where, following Boyarsky et alii [8], in the last equality, vesc =
√

2GM
R was

used. Together with maximal-coarse graining, this assumes that the phase space
density is evaluated at the outer edge of the spherical galaxy (i.e. R = redge), after
which the density drops to zero. If equation (1.5) is applied to any other point r
within the dark matter halo, then two issues arise:

- the escape velocity (if taken as vesc =
√

2GM(r)
r ) will be underestimated and,

therefore, the lower mass bound mDM overestimated

- due to the ellipticity of the orbits, dark matter particles found at radius r may
occupy a volume Vrs that extends past r. This means that the maximally
coarse-grained phase space volume is underestimated and, therefore, the
lower mass bound overestimated

Besides this overestimation, this method also assumes the galaxy to be spheri-
cally symmetric. Instead, true sphericities for LG dSphs range between 0.5 to 0.9,
according to Łokas et alii [9]
These considerations aside, a convenient choice for the radius r at which equation
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10 Introduction

(1.5) is to be evaluated is the 3D half-light radius r12. It is the radius describing the
spherical surface that encloses half of the galaxy’s luminosity and, somewhat as-
toundingly, resolves enclosed masses M(r12) with comparatively low deviations
across different dark matter models [10] †. This apparent model independence of
the measured value of M(r12) makes r12 a viable point to evaluate equation (1.5)
at, although overestimation may still be an issue in this case.
A physically equivalent restriction to equations (1.1) and (1.4) is to impose that
the Fermi velocity vdeg ( corresponding to a fully degenerate system) may not
exceed the escape velocity of the system [8]:

vdeg = h̄

(
6π2M

gm4
DMV

) 1
3

≤ vmax(r) = vesc(r) (1.6)

Presuming that the bound is evaluated at the edge of the galaxy (vesc(r) =
√

2GM
r ),

this formula yields the same bound as the one based on the maximally coarse-
grained phase space density (equation (1.4)). Besides the coarse-grained measure
in equation (1.5), we will, in the following chapters, also consider another, albeit
not maximally, coarse-grained measure for the phase-space density. This mea-
sure results from looking at a single phase space cell and integrating over all of
momentum space at a given point r (rather than integrating over all of spatial and
momentum space as done for the maximally coarse grained measure):

FDM(r) =
1

vol(∆p)

∫
∆p

dp′FDM(p′, r) (1.7)

With vol(∆p) = Vms =
4
3 πp3

max, the new coarse-grained measure then reads

FDM(r) =
ρ(r)

mDMV(r)ms
=

ρ(r)
m4

DM
4
3 πv3

esc(r)
(1.8)

which, together with equation (1.1), leads to the mass bound

mDM ≥
(

h̄36π2ρ(r)
gv3

esc(r)

)1/4

(1.9)

Alternatively to the escape velocity vesc, one may also choose the velocity
dispersion σ2(r) as an estimate for the maximum velocity (see e.g. [8]). The

†In contrast to the 3D half-light radius, the 2D projected half light-radius Re may also be de-
fined. For a projection of the galaxy under consideration onto the sky, Re is the radius describing
the circle enclosing half of the projected galaxy’s luminosity as viewed in the plane of the sky. This
radius is smaller than the 3D half-light radius r12, but does not possess the property of minimizing
the uncertainty in the mass profile !!!

10

Version of July 14, 2020– Created July 14, 2020 - 15:23



1.2 Jeans equations 11

velocity dispersion is a moment of the generally unknown velocity probability
density function and, although highly model-dependent, may be inferred from
data. Assuming some probability density function (e.g. Normal distribution), the
maximum velocity can be approximated based on the velocity dispersion. This
method has the advantage of generally yielding lower values for the maximum
velocity than the escape velocity and can, therefore, lead to a higher, i.e. more
consequential, lower mass bound.

m [keV]

Carina 0.2150.050
0.032

Draco 0.2260.020
0.016

Fornax 0.1640.041
0.026

LeoI 0.1890.059
0.034

LeoII 0.2690.052
0.035

Sculptor 0.2640.038
0.031

Sextans 0.1470.044
0.026

UMi 0.1950.051
0.031

Table 1.1: lower mass bounds from LG dSphs as found in [8]. Note that these mass
bounds were evaluated at the 2D projected half light radius Re (i.e. equation (1.5) with
r = Re and M = M(Re)) for the maximally coarse-grained phase-space density. If one
assumes that Fmax = g

2(2πh̄)3 (see footnote), all the given bounds are higher by a factor

21/4. !!!

Applied to the Local Group dwarf spheroidal galaxies, the Tremaine-Gunn
bound gives lower masses in the 100 eV range (see table 1.1).

1.2 Jeans equations

In order to apply the Tremaine-Gunn bound to LG dSPhs, one needs to derive an
expression for the dark matter phase space density FDM(r). Using approxima-
tions to the phase space density such as equation 1.4, it is necessary to derive an
enclosed mass profile M(r) (or mass density profile ρ(r)) and an expression for
the maximum velocity vmax. As stated in the previous chapter, escape velocities
(as a function of mass profile) or velocity dispersions may be used as a measure
for vmax. Jeans equations describe the motions of either dark matter particles
or luminous matter in galaxies by relating densities, gravitational potentials and
moments of the velocity probability density with one another. This makes Jeans
analysis a convenient first approach for deriving dark matter density models.
The following derivation of Boltzmann equation, moments of the velocity distri-
bution and Jeans equations closely follows Binney et Tremaine [11].
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12 Introduction

1.2.1 Boltzmann equation

For their derivation, Binney et Tremaine treat the stars (or dark matter particles)
as identical collisionless point masses that are continuously distributed in space,
which is valid for a system with many thousands of stars. They define the distri-
bution function f (q, p) as a function describing the probability that any given star
in the galaxy will be found in the phase space volume d3qd3p, centred around the
generalized position q and generalized momentum p. This distribution function,
i.e. the probability per unit phase space volume, is related to the phase space den-
sity FDM(q, p) via FDM(q, p) = N f (q, p), where N is the number of stars/particles
in the galaxy. Naturally, this distribution function is normalized to give∫

galaxy
f (q, p)d3qd3p = 1 (1.10)

The collisionless Boltzmann equation is a direct consequence of the conserva-
tion of probability:

∂ f
∂t

+
∂

∂q
( f q̇) +

∂

∂p
( f ṗ) = 0 (1.11)

With f = f (q, p). Using Hamilton’s equation (∂H
∂q = − ṗ; ∂H

∂p = q̇) this can be
rewritten to yield the collisionless Boltzmann equation:

∂ f
∂t

+ q̇
∂ f
∂q

+ ṗ
∂ f
∂p

= 0 (1.12)

In Cartesian coordinates the Hamiltonian reads H = 1
2(p2

x + p2
y + p2

z)+Φ(x, y, z)
and the collisionless Boltzmann equation thus becomes

∂ f
∂t

+ p
∂ f
∂x
− ∂Φ

∂x
∂ f
∂p

= 0 (1.13)

In a spherical coordinate system, the Hamiltonian takes on the form: H =

1
2(p2

r +
p2

θ

r2 +
p2

φ

r2 sin2 θ
) + Φ(r, θ, φ), which lets us recast equation (1.12) as

∂ f
∂t

+ pr
∂ f
∂r

+
pθ

r2
∂ f
∂θ

+
pφ

r2 sin2 θ

∂ f
∂φ
− (

∂Φ
∂r
−

p2
θ

r3 −
p2

φ

r3 sin2 θ
)

∂ f
∂pr

−(∂Φ
∂θ
−

p2
φ cos θ

r2 sin3 θ
)

∂ f
∂pθ
− ∂Φ

∂φ

∂ f
∂pφ

= 0

(1.14)

1.2.2 Velocity distribution

Generally speaking, Jeans equations are obtained by integrating the collisionless
Boltzmann equations over momentum space. In order to rewrite the resulting

12
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1.2 Jeans equations 13

equations, it is convenient to utilize expressions for the moments of the velocity
distribution function Px(v). The velocity distribution function gives the probabil-
ity for a chosen star with position x to be found with velocity v. Using the usual
relations for conditional probability, Px(v) can easily be expressed as:

Px(v) =
f (x, v)
ν(x)

(1.15)

where ν(x) is the probability to find the given star at position x regardless of its
velocity. An expression for ν(x) is achieved by integrating out the dependence of
f (x, v) on the velocity.

ν(x) =
∫

f (x, v)d3v (1.16)

Other distribution functions, such as Px(vx), the probability of finding the star
with velocity vx in x-direction, similarly, can be obtained by integrating out de-
pendence on velocities in other directions. This makes writing down the mo-
ments of the velocity distribution a simple task.
In Cartesian coordinates:

vx(x) =
1

ν(x)

∫
vx f (x, v)dvxdvydvz

vy(x) =
1

ν(x)

∫
vy f (x, v)dvxdvydvz

vz(x) =
1

ν(x)

∫
vz f (x, v)dvxdvydvz

(1.17)

In spherical coordinates, the canonical momenta read

pr = ṙ = vr pθ = r2θ̇ = rvθ pφ = r2 sin2 θφ̇ = r sin θvφ (1.18)

and, thus, the moments become !!!

pr(x)=
1

ν(x)

∫
pr f (x, v)dvrdvθdvφ →

∫
f prd3p=r2 sin θν(x)pr(x)

pθ(x)=
1

ν(x)

∫
pθ f (x, v)dvrdvθdvφ →

∫
f pθd3p=r2 sin θν(x)pθ(x)

pφ(x)=
1

ν(x)

∫
pφ f (x, v)dvrdvθdvφ →

∫
f pφd3p=r2 sin θν(x)pφ(x)

(1.19)

In practice, none of the above moments are accessible to observations of LG
galaxies. Instead (and only in the case where we apply these equations to lumi-
nous matter), only the projected radial position and the line-of-sight (LOS) veloc-
ity can be measured directly, i.e. without making model assumptions. The LOS
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14 Introduction

velocity is the velocity component parallel to the line of sight established between
the distant observer on earth and the center of the observed galaxy (given that the
galaxy is sufficiently far away for the LOS vector to be parallel to the vector con-
necting the distant observer on earth with any given star in the galaxy). Refer to
figure 1.2 for a depiction of the relevant coordinates.

Figure 1.2: (left side) Definition of line of sight (~x||) and projected (!) radial coordinate
(x⊥, sometimes also R) of a position (~x) within the galaxy. Note that the actual radial
coordinate r refers to the norm of the vector ~x. r and R only coincide when a perfectly flat
disk is viewed along the symmetry axis. (right side) Definition of line of sight (~v||) and
projected radial coordinate (v⊥, sometimes also vR) of a velocity (~v) within the galaxy.
Note that ~xLOS1 = ~xLOS2 in the case of a distant galaxy. The background image of the
Andromeda galaxy was taken from [12]

Since these LOS and projected radial positions are highly useful, their distri-
bution function and most meaningful moments are defined below. Among them
is the line-of-sight velocity distribution Px⊥(v||),

Px⊥(v||) =

∫
ν(x)dx||

∫
d2v⊥Px(v)∫

ν(x)dx||
(1.20)

v||(x⊥) =
∫

dv||v||Px⊥(v||) (1.21)

v2
||(x⊥) =

∫
dv||v

2
||Px⊥(v||) (1.22)

σ2
|| = v2

|| − v||
2 (1.23)

With the σ|| as the line-of-sight velocity dispersion (also σLOS).

14
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1.2 Jeans equations 15

1.2.3 Jeans equations

With these moments now defined, we are now ready to derive Jeans equations.
Note that the number density ρ(x) can be obtained from the spatial probability
function ν(x) via ρ(x) = Nν(x), with N as the total number of the component un-
der consideration within the galaxy (e.g. total number of stars or total number of
dark matter particles). This means, for DM particles ρDM(x) = Ntot,DM · νDM(x)
and for stellar matter ρ∗(x) = N∗tot · ν∗(x)). We, therefore, elect to rewrite the equa-
tions using the more physically accessible number density instead of the spatial
probability function. ‡. In the following, spatial dependencies are implied, but
not explicitly noted.

In Cartesian coordinates:

• 1st order Jeans equation, obtained by integrating equation (1.13) over d3v

∂

∂t

∫
f d3v +

∂

∂xi

∫
f vid3v +

∂Φ
∂xi

∫
∂ f
∂vi

d3v = 0 (1.24)

rewritten using the previously defined moments and with the vanishing
boundary term

∂

∂t
ρ +

∂

∂xi
viρ = 0 (1.25)

• 2nd order Jeans equation, obtained by integrating equation (1.13) over vrd3v

ρ
∂vj

∂t
+ ρvi

∂vj

∂xi
= −ρ

∂Φ
∂xj
−

∂(ρσ2
ij)

∂xi
(1.26)

In spherical coordinates:

• 1st order Jeans equation, obtained by integrating equation (1.14) over d3p
evaluates to 0=0, as a consequence of uneven moments (vr,vθ,vφ) vanishing

• 2nd order Jeans equation, obtained by integrating equation (1.14) over prd3p
(see Appendix A)

‡Alternatively, we may also think of ρ as the mass density with ρ(x) = Mν(x) and M as the
total mass of the component under consideration within the galaxy [11, p359] (i.e. for dark matter
particles ρDM(x) = Mtot,DM · νDM(x) and for stellar matter ρ∗(x) = M∗tot · ν∗(x)). This assumes
that all particles/stars of the same component are identical, which is consistent with the initial
assumptions made for the Boltzmann equations. The following analysis still applies, although
adjustments may have to be made to recover correct dimensionality (e.g. Σ as the projected mass
density instead of projected number density)
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16 Introduction

∂

∂r
v2

r ρ + ρ
∂Φ
∂r

+
1
r

ρv2
r 2(−

v2
θ + v2

φ

2v2
r

+ 1) = 0

It is then useful to define the anisotropy parameter

β = −
v2

θ + v2
φ

2v2
r

+ 1 (1.27)

which generally is a function of position and heavily depends on the total
angular momentum. Based on its range, one discerns between radially bi-
ased (β > 0) and tangentially biased (β < 0) models. Perfectly radial orbits
correspond to σθ = σφ = 0 and β = 1, whereas perfectly circular orbits lead
to σr = 0 and β = −∞. β = 0 represents an ergodic system [11, p294].
This leads to the 2nd order Jeans equation in spherical coordinates (note
that, since vr = 0, v2

r = σ2
r ):

∂

∂r
(v2

r ρ) +
2
r

ρv2
r β = −ρ

∂Φ
∂r

(1.28)

• 2nd order Jeans equation, obtained by integrating equation (1.14) over pφd3p

∂

∂φ
v2

φρ− ∂Φ
∂φ

ρ = 0 (1.29)

In spherically symmetric systems this will equate to 0=0

• 2nd order Jeans equation, obtained by integrating equation (1.14) over pθd3p
will also equate to 0=0 for spherically symmetric systems

• 4th order Jeans equation, obtained by integrating equation (1.14) over p3
r d3p

∂

∂r
(ρv4

r ) +
2β′

r
ρv4

r + 3ρ
dΦ
dr

v2
r = 0 (1.30)

with β′ = 1− 3
2

v2
r v2

t

v4
r

and v2
t = v2

φ + v2
θ

• combining the 4th order Jeans equations, obtained by integrating equa-
tion (1.14) over pr p2

θd3p and by integrating the same equation (1.14) over
pr p2

φd3p gives

4ρv2
r v2

t + r
∂

∂r
(ρv2

r v2
t ) + ρ

∂Φ
∂r

v2
t r− ρv4

t = 0 (1.31)

16
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1.2 Jeans equations 17

Given that infinite order Jeans equations can be generated employing this
mechanism of integrating equation (1.14) over momentum space, it is tempting
to use this fact to write down just enough equations to solve the system, i.e. ob-
taining expressions for ρ and the moments of the velocity distribution function.
However, as can be seen by comparing equations (1.28) and (1.30), higher order
Jeans equations always introduce new variables (see table (1.2)), making it im-
possible to solve the system definitely via including higher order equations.

order integral equation variables
1st order d3p 0 = 0∗∗

2nd order prd3p ∂
∂r v2

r ρ + 2
r ρv2

r β = −ρ ∂Φ
∂r ρ,v2

r , β
pθd3p 0 = 0∗∗

pφd3p 0 = 0∗∗

3rd order p2
r d3p 0 = 0∗∗

pr ptd3p 0 = 0∗∗

4th order p3
r d3p ∂

∂r ρv4
r +

2β′

r ρv4
r + 3ρ dΦ

dr v2
r = 0 ρ, v4

r , v2
r , β′

pr p2
t d3p 4v2

r v2
t +

r
ρ

∂
∂r ρv2

r v2
t +

∂Φ
∂r v2

t r = v4
t ρ, v2

r v2
t , v2

t , v4
t

Table 1.2: Overview of newly introduced variables per higher order Jeans equation.
∗∗ Due to spherical symmetry (No new equation, thus, no new introduced variables)

Commonly, these issues are circumvented by making assumptions about the
system at hand. For example, constraining the system to those models that are
perfectly isotropic lets us set β to 0 and effectively removes one of the variables.
This is a frequent approach in literature, however, one runs risk to derive an in-
accurate solution.
When working with real galactic systems such as dSphs, there are two main com-
ponents to consider: the gravitationally dominating dark matter particles and the
luminous tracers (e.g. stellar matter), both satisfying their own Jeans-equations.
The total tracer mass is low compared to the total dark matter mass, meaning
both components approximately move in the gravitational potential resulting
from dark matter particles only (see [13]). The coupled Jeans-equations then read

∂

∂r
(v2

r,DM · ρDM) +
2
r

ρDM · v2
r,DM · βDM = −ρDM

∂ΦDM

∂r
(1.32)

∂

∂r
(v∗2r · ρ∗) +

2
r

ρ∗ · v∗2r · β∗ = −ρ∗
∂ΦDM

∂r
(1.33)

with the subscript DM indicating dark matter components and the super-
script ∗ indicating stellar components. Since ΦDM can be constructed from ρDM,
it is not an independent variable (see table 1.2). These equations bear similarity to
the equation for hydrostatic equilibrium (see section 2.1.2). The analysis of dark
matter and tracer components using line-of-sight velocity data and the previous
Jeans-equations (including equation (1.34)) is referred to as standard Jeans analysis

!!!
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18 Introduction

1.2.4 Virial equations

Due to the previously mentioned limitations, the profiles suffer from mass-anisotropy
degeneracy (also density-anisotropy degeneracy or β-degeneracy) (see e.g. [14], [15]):
From measuring physical quantities, such as the line-of-sight velocity dispersion
(see equation 1.34), one cannot clearly determine both the anisotropy parameter
β and the velocity dispersion (or, equivalently, the enclosed mass or density). In
order to try to alleviate this issue, the Virial equations are introduced in the fol-
lowing.
The solutions of Boltzmann equation are functions of momenta and positions
which describe mass distributions and kinematics of the system. As we have seen
in the previous chapter, Jeans equations are derived from Boltzmann equation
by integrating momentum dependencies out. The solutions of Jeans equations
are therefore profiles (e.g. mass profiles M(r)). Another measure is obtained by
going a step further and integrating spatial dependencies out of the Jeans equa-
tions.§. The solutions of these new Virial equations are parameters, which won’t
allow for determining the profiles analytically, but may be used as fit parameters
(see e.g. Fairbairn et alii [15]).
Before giving a derivation of the second order Virial equation, we will first intro-
duce equation (1.34). This identity is given by Binney et Tremaine [11][16]

Σ(R)v2
LOS(R) = 2

∫ ∞

R

(
1− β(r)

R2

r2

)
ρ(r)v2

r (r)r√
r2 − R2

dr (1.34)

where Σ(R) is the 2D number density as projected onto the sky, ρ(r) the 3D
stellar number density, R the 2D projected radius (see figure (1.2) for clarifica-
tions), and r the 3D radius. For a proof of this equation, see Appendix A.

Now to continue onto the Virial equations. Merrifield and Kent [17] show that
the second order Virial equation reads

3
∫ ∞

0
Σ(R)v2

LOS(R)RdR = 2
∫ ∞

0
ρ(r)

dΦ(r)
dr

r3dr (1.35)

The usefulness of this equation is immediately clear once the left-hand side is
examined: It is a function of quantities that can be directly accessed via observa-
tion only.

Proof. Comparing the Virial equation to the 2nd order Jeans equation, suggests
that equation (1.28) ought to be multiplied with r3 and integrated over all spatial
coordinates to yield:

§It will become apparent that we are looking at the Jeans equation describing the tracer compo-
nent - equation 1.33, since this component is the only one directly accessible to observation. Virial
equations relate observationally determined quantities to the underlying profiles. The tracer par-
ticles move in the dark matter particle potential Φ, which we will assume to be known in the
following

18
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1.2 Jeans equations 19

∫
∂

∂r
(v2

r ρ)r3dr +
∫ 2

r
ρv2

r βr3dr = −
∫

ρ
∂Φ
∂r

r3dr

−3
∫

v2
r ρr2dr + 2

∫
ρv2

r βr2dr = −
∫

ρ
∂Φ
∂r

r3dr∫
v2

r ρr2(2β− 3)dr = −
∫

ρ
∂Φ
∂r

r3dr

(1.36)

Multiplying equation (1.34) with R and integrating both sides from R = 0 to
∞ (this is, again, motivated by comparing the left-hand sides of equation (1.35)
and equation (1.34)):

∫ ∞

R=0
Σv2

LOS(R)RdR = 2
∫ ∞

R=0

∫ ∞

r=R
(1− β

R2

r2 )
ρv2

r r√
r2 − R2

RdrdR

= 2
∫ ∞

r=0

∫ r

R=0
(1− β

R2

r2 )
ρv2

r r√
r2 − R2

RdrdR

= 2
∫ ∞

r=0
ρv2

r rdr
∫ r

R=0

(1− β R2

r2 )√
r2 − R2

RdR

= 2
∫ ∞

r=0
ρv2

r r(r− 2
3

βr)dr

= −2
3

∫ ∞

r=0
ρv2

r r2(2β− 3)dr

(1.37)

With this, equation (1.36) can be rewritten as

3
2

∫ ∞

0
Σv2

LOSRdR =
∫ ∞

0
ρ

∂Φ
∂r

r3dr (1.38)

Not only does the second order Virial equation relate observationally accessi-
ble quantities to the profiles we want to probe, it also has the added advantage
that it, compared to the same order Jeans equation, reduces the amount of un-
known variables involved. The same goes for the two relevant fourth order Jeans
equations (given by [17]):

∫ ∞

0
Σv4

LOSRdR = 2
∫ ∞

0
ρv2

r

(
1− 2

5
β

)
dΦ
dr

r3dr (1.39)

∫ ∞

0
Σv4

LOSR3dR = 2
∫ ∞

0
ρv2

r

(
1− 6

7
β

)
dΦ
dr

r5dr (1.40)

Table (1.3) shows how introduction of Virial equations reduces the number of
unknown variables (Σ(R) and moments of the line-of-sight velocity distribution
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Jeans equation Virial equation

1st equ. ∂
∂r (v

2
r ρ) + 2

r ρv2
r β = −ρ ∂Φ

∂r → 3
∫ ∞

0 Σv2
LOSRdR = 2

∫ ∞
0 ρ dΦ

dr r3dr

var. ρ, v2
r , β ρ

2nd equ. ∂
∂r (ρv4

r )+
2β′

r ρv4
r +3ρ dΦ

dr v2
r =0 →

∫ ∞
0 Σv4

LOSR3dR=2
∫ ∞

0 ρv2
r
(
1-6

7 β
) dΦ

dr r5dr∫ ∞
0 Σv4

LOSRdR=2
∫ ∞

0 ρv2
r
(
1-2

5 β
) dΦ

dr r3dr

var. ρ, v4
r , β′, v2

r ρ, β, v2
r

Table 1.3: comparison of equations and variables for Jeans equations and Virial equations
of the same order

are not considered unknown, because they can be fixed by observations). Specif-
ically, an n-order Virial equation contains only those variables that are already
present in the (n-2)-order Jeans equation. However, despite their many advan-
tages, it should be noted that Virial equations can’t be used to solve the system
either, as their derivation calls for the profiles’ spatial dependencies to be inte-
grated out, yielding only parameters. Nevertheless, these parameters are very
useful for the purpose of fitting and comparing the quality of different proposed
density and velocity anisotropy profiles. [15]

20
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Chapter 2
Dark Matter Density Models

As previously stated, solving a model describing dSPhs is equivalent to finding
a characteristic density distribution and the moments of the velocity distribution
function. The following proposed models represent attempts at finding these
solutions. The final goal in this context is to find a lower bound to the dark matter
particle mass using methods such as the Tremaine Gunn bound.

2.1 Randall-Scholtz-Unwin Model

This model will be referred to as Randall-Scholtz-Unwin (RSU) Model, after its
originators. We will first reiterate its derivation (found in [18]) and go into detail
about the model’s issues after.
To summarize, the RSU model introduces a two parameter dark matter density
profile,by assuming:

• the body under consideration is a dark matter dominated object with spher-
ical symmetry

• Observational knowledge of the half-light mass M1/2 enclosed within half
light radius r1/2 (see Chapter (1.1)).

• Study of isotropic and collisionless dark matter as ideal gas

– Temperatures of particles defined by Virial condition (finite orbits)

– Pressure increased by Fermi degeneracy pressure

• Observational knowledge of the core radius Rc where dlogρ
dlogR = −3

2

2.1.1 Model

Following [18], as starting point, one chooses to consider the collection of dark
matter particles only, which dominates the total mass of the dSPh as a though it
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22 Dark Matter Density Models

were a perfect fluid in hydrostatic equilibrium (more about this choice in chapter
(2.1.2)). The hydrostatic equilibrium equation then reads :

dP(r)
dr

= −
(

GM(r)
r2

)
ρ(r) (2.1)

where ρ(r) describes the dark matter matter density (i.e. ρ = ρDM) and with
the enclosed mass

M(r) = 4π
∫ r

0
ρ(r′)r′2dr′ (2.2)

noting that M(0) = 0. An equation of state is required to solve the system. The
RSU-model’s authors consider the pressure in two regimes within the galaxy,
with the total pressure resulting from effects in both the quantum and classical
regime approximated by P(r) = Pclass(r) + Pquantum(r). The classical pressure is
derived from the Virial condition, which, for finite orbits in a stable gravitation-
ally bound system, can be expressed as:

Ekin(r) =
GM(r)m

2r

→ T =
GM(r)m

2r

→ Pclass(r) =
ρ(r)
m

T(r) =
GM(r)ρ(r)

2r

(2.3)

The Fermi degeneracy pressure is that of a fully degenerate gas at T=0. This
pressure is consequence of the Pauli exclusion principle, which acts as a force re-
sisting the compression of matter into a smaller phase space volume. The quan-
tum pressure term is given by [19, p197]:

Pquantum(r) =
2
3

Etot,quantum|T=0

V
(2.4)

=
(3π2)2/3h̄2

5m8/3 ρ(r)5/3 (2.5)

The two pressure terms enable rewriting of equation (2.10)

∂

∂r

(
GM(r)ρ(r)

2r
+

(3π2)2/3h̄2

5m8/3 ρ(r)5/3

)
= −ρ(r)

GM(r)
r2 (2.6)

which, together with equation (2.2), results in a system of equations, which can
be solved for ρ(r). The solution has two degrees of freedom: the core density
ρ(r = 0) = ρ0 and the particle mass m. As stated in chapter (1.1), the mass
enclosed within the half light radius r1/2 is assumed to be highly model indepen-
dent. M(r1/2) can, therefore, be used to fix the one free parameters left after the
other has been specified (see figure (2.1).

22
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2.1 Randall-Scholtz-Unwin Model 23

Figure 2.1: density profiles of the RSU model for a particle with one degree of freedom.
The (ρ0,m)-pairs were chosen such that they reproduce the mass enclosed within the half-
light radius of the Fornax LG dSph.!!! The profiles are evidently cored, in line with ob-
servations of galactic rotation curves

Mass bound

With another measure, similar to r1/2, one can now uniquely fix the parameter
pair (ρ0,m). The authors of the RSU-model choose the core radius of the galaxy
under consideration (for issues regarding this choice see chapter 2.1.2), as defined
by:

dlogρ

dlogR

∣∣∣∣
R=Rc

= −3
2

(2.7)

The blue curve in figure (2.2) shows possible values of the core radius Rc for
density profiles that all reproduce the correct half-light mass M1/2 with varying
particle mass m. The red curve segment shows the 95% confidence interval for
the core radius for the Fornax LG dSph as determined by [20].

Rc = 10.8
0.4 kpc (2.8)

The upper limit for the core radius determines the lower mass bound. The
authors of the RSU-model thus derive a lower mass bound of 70 eV. For the
reproduction here, a less strict lower mass bound of 55 eV was derived. The dif-
ference is assumed to be due to different methods used to determine the accurate
(ρ0, m)-pair to reproduce M1/2. Both estimates are considerably lower than those
based on the Tremaine-Gunn bound (see Table (1.1)).
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24 Dark Matter Density Models

Figure 2.2: dark matter particle mass as a function of core radius for a particle with one
degree of freedom

2.1.2 Limitations

Using the hydrostatic equilibrium equation (2.1) to describe the dark matter den-
sity profile, implicitly implies for the anisotropy parameter β(r) = 0. We will
prove this by showing that this equation is equivalent to the one derived for a
static, spherically symmetric, and isotropic ideal gas. Firstly, one refers to the
spherical second order Jeans equation, derived in chapter (1.2.3). Here, ρ refers
to the matter density, instead of the number density - see footnote on page 15.
Contrary to other models, this derivation disregards the existence of any tracer
populations in the dSphs and instead only looks at dark matter particles.

∂

∂r
(v2

r ρ) +
2
r

ρv2
r β = −ρ

∂Φ
∂r

(2.9)

To get to equation (2.1), the RSU model implicitly assumes that the system is
isotropic, yielding β = 0. Furthermore the system of dark matter particles is sup-
posed to behave as an ideal gas, with the ideal gas law PV = NT (c = kB = 1) or
Pm = ρT with m as the dark matter particle mass. The stars are then Boltzmann-
distributed with a rms velocity of v2 = 3T

m → v2
r = T

m The second order Jeans
equation thus becomes

∂

∂r

(
T(r)

m
· P(r)m

T(r)

)
= −ρ(r)

∂Φ(r)
∂r

∂

∂r
P(r) = −ρ(r)

GM(r)
r2

(2.10)

Setting β = 0 is consistent with the claim of ergodicity (see chapter (1.2.3)),

24
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2.2 Ruffini-Argüelles-Rueda Model 25

which is necessary for the Virial theorem to be applicable.∗

Restricting the dark matter particles to an isotropic velocity dispersion across
the entire radial range is very limiting and may not describe real cases accurately
(e.g. [15] for Sculptor or [21] for Sculptor and Fornax). Apart from this issue, the
core radius Rc is highly model dependent and has been derived specifically for
Burkert and NFW density profiles, which are naturally different from those of the
RSU-model, impacting the accuracy of the mass bound.

2.2 Ruffini-Argüelles-Rueda Model

The Ruffini-Argüelles-Rueda (RAR) Model is a dark matter halo model modified
by three free parameters. Like before, we will first cover their derivation (based
on [22],[23]) and then analyse the fundamental issues associated with this theory.
To summarize, the RAR dark matter density profile assumes:

• Thermodynamic equilibrium/ reversible changes

• Perfect fluid in static, spherically symmetric metric (leading to Tolman-
Oppenheimer-Volkhoff equation for hydrostatic equilibrium)

• Pressure P and energy density ρ defined by Fermi statistics

• Evaluation in rest frame of the fluid

2.2.1 Model

Similarly, to the Randall-Scholtz-Unwin Model, the RAR-model primarily con-
siders the behaviour of the dark matter component in the galaxy and disregards
the tracer population (i.e. ρ = ρDM). The theory behind the RAR model is built
upon the work done by O. Klein [24], who derives expression (2.19) and (2.20) the
following way (only for the derivation of these two expressions will we use c=1).
As starting-point, one chooses the energy momentum tensor for the perfect fluid:

Tµν = (P + ρe)uµuν − Pgµν (2.11)

with a energy density ρe, pressure P, and fluid 4-velocity uµ. A very general
spherically symmetric metric describing the gravitational field of a galaxy can
be written down:

ds2 = eν(r)dt2 − eµ(r)(dr2 + r2dΩ2) (2.12)

∗The Virial theorem dictates v2 m
2 = Ekin(r) = GM(r)m

2r . Therefore, since v2 = 3T
m , we have

T = GMm
3r . The factor of 1/3 instead of 1/2, as used by the authors of the RSU-model, does not

change the model fundamentally and has little influence on the derived lower mass bound
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26 Dark Matter Density Models

As is a typical assumption, we are considering the fluid in its rest frame (expec-
tation values v = 0). Conservation of energy-momentum yields:

Tµν
;µ = 0

((P + ρe)uµuν);µ + (Pgµν);µ = 0

Γµ
σν(P + ρe)uσuν + ∂νP = 0

∂iP +
P + ρe

2
∂iν(r) = 0

(2.13)

From thermodynamic principles, we have, for a closed system and reversible
changes (with chemical potential µ and entropy S):

U = TS− PV + µN
dU = TdS− PdV + µdN

↓
0 = SdT −VdP + Ndµ

0 =

(
U + PV − µN

T

)
dT −VdP + Ndµ

(2.14)

Which we can use to derive (with η = N/V, energy density ρe = U/V):

∇iT
T

(ρe + P− µη)−∇iP + η∇iµ = 0 (2.15)

With equation (2.13), this can be rewritten as(
∇iT

T
+
∇iν

2

)
(ρe + P) +

(
∇iµ

µ
− ∇iT

T

)
ηµ = 0 (2.16)

Assuming (ρe + P) and η to be linearly independent from each other (more about
this in 2.2.2), equation (2.16) yields two separate equations:(

∇iT
T

+
∇iν

2

)
= 0 (2.17)(

∇iµ

µ
− ∇iT

T

)
= 0 (2.18)

which can be solved to give:

T = T0e
ν0−ν

2 (2.19)

µ = µ0e
ν0−ν

2 (2.20)

With these two equations derived, the authors of the RAR model refer to the
Tolman–Oppenheimer–Volkoff equation [25]:

dν

dr
= 2

2GM(r)c2 + 4πGr3P(r)
c4

r2
(

1− 2GM(r)
c2r

) (2.21)

26
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2.2 Ruffini-Argüelles-Rueda Model 27

derived, again, for a perfect fluid in a static, spherically symmetric metric by solv-
ing Einstein’s field equations.
Since the dark matter particles are assumed to be fermionic, it is appropriate to
use the Fermi-Dirac distribution f (E) function to describe their velocity distribu-
tion, as well as pressure P and density ρ [26] †

f (p, r) =
1

1 + Exp
(

E(p)
kT(r) −

µ(r)
kT(r)

)
ρ(r) = 2

1
h3

∫
f (p, r)E(p)d3p

P(r) = 2
c2

3h3

∫
f (p, r)

p2

E(p)
d3p

(2.22)

Rescaling of the system’s variables makes it more clear and simpler to solve:

M̂ = Mm2

√
2
(

G
hc

)3

P̂ = P
h3

2m4c5

ρ̂ = ρ
h3

2m4c3

r̂ = rm2

√
2Gc
h3

(2.23)

Besides this, one also defines

β(r) =
kT(r)
mc2 (2.24)

θ(r) =
µ(r)

kT(r)
(2.25)

(β is not to be confused with the velocity anisotropy) which one can rewrite,
using equations (2.19) and (2.20):

β(r) =
kT0

mc2 e
ν(r)−ν0

2 = β0e
ν(r)−ν0

2 (2.26)

θ(r) = const = θ0 (2.27)

Finally, one can rewrite the Tolman–Oppenheimer–Volkoff equation (2.21) and
the distribution function equations (2.22) with the rescaled variables:

†The authors of the RAR-model choose a slightly different definition for the chemical potential
µ than the one used here. Changing from µRAR to the variable µ used here, is done simply via
µRAR = µ− mc2 (Ruffini et alii further redefine the Fermi-Dirac distribution such that the result
of the derivation is unchanged). Some calculations are more instructive and simpler using the
notation presented here.
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dν

dr̂
= 2

M̂(r̂) + 4πr̂3P̂(r̂)
r̂
(
r̂− 2M̂(r̂)

)
ρ̂(ν(r̂)) = 4π

∫
f (p, ν(r̂))p2

√
1 + p2dp

P̂(ν(r̂)) =
4π

3

∫
f (p, ν(r̂))

p4√
1 + p2

dp

f (p, ν(r̂)) =

(
1 + Exp

(√
1 + p2

β(ν(r̂))
− θ0

))−1

(2.28a)

(2.28b)

(2.28c)

(2.28d)

In accordance with the weak-field approximation, ν0 = ν(r = 0) is chosen
to be 0. The free parameters are then m, β0 and θ0. Together with the usual
expression for the enclosed mass

dM̂(r̂)
dr̂

= 4πr̂2ρ̂(r̂) (2.29)

The system of equations (2.28) can be solved numerically upon choice of pa-
rameters (β0, θ0). After solving the system, the thus obtained quantities can be
rescaled back to physical units. The parameter m is only used to rescale the sys-
tem and is not necessary to specify to obtain the initial solution. The resulting
density profile is given in figure (2.3). It is marked by three distinct region: A
quantum core (here, up until 0.1 pc), a transition regime, where the density pro-
file sharply drops and eventually plateaus, and a classical regime, where quan-
tum corrections are negligible and which is described by Boltzmann statistics,
with a isothermal sphere (ρ ∼ r−2).

Figure 2.3: Density profile of the RAR model. ‡

28
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2.2 Ruffini-Argüelles-Rueda Model 29

The free parameters may be chosen such that observational quantities are re-
produced. Figure (2.3)) suggests how the free parameter of the fermion particle
mass may be fixed via comparison to the value of M1/2 or to the circular velocity
v1/2 defined as

v1/2 =

√
GM(r)

r− 2GM(r)/c2 (2.30)

For fixed β0 = 1.3 ∗ 10−7, θ = 1/β0 + 25, variation of the parameter m leads
to different values for the enclosed mass M1/2 within the half-light radius r1/2
(red curve) or v1/2 (blue curve). The curves are normalized such that a value of 1
(grey line) represents a typical measured value (here for spiral galaxies, as given
by Ruffini et alii [22] and Blok et alii [27]).

Figure 2.4: Enclosed mass M1/2 at the half-light radius (red curve) and circular velocity
r1/2 (blue curve) for different fermion particle masses m, normalized such that a value
of 1 corresponds with the observationally obtained value. This means that, for the given
parameters (β0, θ0), a particle mass of 2.5keV or 4.5keV is predicted

Scaling

A few words on scaling of the density profile: The particle mass m only influences
overall scale. This is because the mass is not used to solve the (dimensionless)
differential equation, and is instead only relevant for rescaling back to physical
units. The r-axis scales like m−2 (i.e. a higher particle mass means the density
profile falls of quicker) and the ρ-axis as m4 (i.e. a higher particle mass means
the density is higher). Variation of β0 seems to mostly result in a change in the

‡Due to varying notation, for θRAR,0 = 30 we have θ = µ0
kT0

=
µRAR,0

kT0
+ 1

β0
= θRAR,0 +

1
β0

=

30 + 1
β0
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30 Dark Matter Density Models

overall scale, with higher densities for larger β0. The influence of θ0 is clear upon
comparison (see 2.5): The lower θ0 the larger the classical regime.

Figure 2.5: density profiles for variation of θ0. (left) θ0 = 1/β0 + 10, (right) θ0 =
1/β0 + 30. The lower θ0 the smaller the transition (flat) regime, and the larger the classical
regime.

2.2.2 Limitations

Non-relativistic approximation

Due to the initial conditions used by Ruffini et alii (β0 ∼ 10−7, θ0 ∼ 107), ν(r)
is small across the entire range ( ν(r) < 10−5). Therefore, f (p) as defined by
equation (2.28d), gets very small for large p ( f (0.007) ∼ 10−94 for these values).
For terms occurring inside this integrals one then has

p2 � m2
√

1 + p2 ≈ 1 p2 + p4 ≈ p2 (2.31)

Which reduces the important definitions

ρ̂e(ν(r̂)) = 4π
∫

f (p, ν(r̂))p2
√

1 + p2dp

≈ 4π
∫

f (p, ν(r̂))p2dp

= ρ̂m(ν(r̂))

(2.32)

P̂(ν(r̂)) =
4π

3

∫
f (p, ν(r̂))

p4√
1 + p2

dp

≈ 4π

3

∫
f (p, ν(r̂))p4dp

� ρ̂e(ν(r̂))

(2.33)

And since (with ρ̂m = mη̂ → ρ̂m = η̂).
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2.2 Ruffini-Argüelles-Rueda Model 31

ρ̂m(ν(r̂)) = η̂e(ν(r̂)) = 4π
∫

f (p, ν(r̂))p2dp ≈ ρ̂e(ν(r̂)) (2.34)

In other words: For ρm to be equal to ρe, P + ρ has to be qual to ρ to the same
order. Even without solving the system, one can see that Ruffini et alii explicitly
assume ρm = ρe, since equation (2.28b) and equation (2.29) use the same defini-
tion for ρ. The equation

∂iP̂ = − P̂ + ρ̂

2
∂iν̂(r̂) (2.35)

was derived using GR for a perfect fluid only. In their following derivation,
Ruffini et alii [22], as well as Gao et alii [23], apply the relations to an ideal Fermi
gas. To verify equation (2.35)s validity for a Fermi gas, we have to evaluate the
equality using the integrals defined by equations (2.22). We do this by referring
to figure (2.6), which shows different ways of arriving at a value for the pressure
gradient dP

dr by varying the value of ν̂ (the precise functional dependence is unim-
portant, as we will show below).

Figure 2.6: Comparisons of the (normalized) value for the pressure gradient (for specific
values (θ0, β0) and varying ν(r)) between Fermi and GR derivations. The curves seem to
coincide (in our bona fide approach, small deviations are deemed acceptable)

The blue curve, i.e. the ”Fermi” curve, is obtained by directly taking the
derivative of

P̂(ν(r̂)) =
4π

3

∫
f (p, ν(r̂))

p4√
1 + p2

dp (2.36)
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which is the definition of rescaled pressure for a Fermi gas. Since the coordi-
nates are rescaled, one can disregard the value of m. Functionally, the equation
depends on r̂ only through ν̂(r̂), resulting in an unknown factor of ν̂′(r̂) from the
chain rule. Since the right-hand side of equation (2.35), conveniently, depends on
ν̂′(r̂) as well, one can simply eliminate this factor.

The red curve, i.e. ”GR” curve, is obtained by plugging in the two definitions:

ρ̂(ν(r̂)) = 4π
∫

f (p, ν(r̂))p2
√

1 + p2dp (2.37)

P̂(ν(r̂)) =
4π

3

∫
f (p, ν(r̂))

p4√
1 + p2

dp (2.38)

into the right-hand side of equation (2.35).
The variable ν̂(r̂) is varied within a range consistent with the non-relativistic

approximation and in order to eliminate any erroneous prefactors, both curves
are normalized. For the GR formula to hold for the Fermi case, the two should be
the same for every relevant ν̂. It seems like this condition is satisfied.
As we already saw, in this approximation ρ̂e = ρ̂m , which Ruffini et alii use to
derive the equations (2.19) and (2.20). To summarize

P̂(ν(r̂))� ρ̂e(ν(r̂)) (2.39)
ρ̂m(ν(r̂)) = η̂(ν(r̂)) ≈ ρ̂e(ν(r̂)) = ρ̂(ν(r̂)) (2.40)

By inserting these identities into equation 2.16, one obtains:(
∇iT

T
+
∇iν

2

)
(ρ̂ + P̂) +

(
∇iµ̂

µ̂
− ∇iT

T

)
η̂µ̂ = 0(

∇iT
T

+
∇iν

2

)
ρ̂ +

(
∇iµ̂

µ̂
− ∇iT

T

)
ρ̂µ̂ = 0

∇iT
T

+
∇iν

2
+∇iµ̂−

∇iT
T

µ̂ = 0

(2.41)

with µ̂ = µ
mc2 . An important step in the derivation of Ruffini et alii was that ρ, P

and η are linearly independent, which is not the case in this approximation and
we don’t get two independent equations.

General case

We have seen, that the non-relativistic approximation leads to contradictions which
cannot bee remedied. Even though there is implicit proof for the idea that Ruffini
et alii do work with this approximation, we will try to examine the derivation for
a model not limited to a specific domain (as one can naively guess that P and
ρ, based on their functional form introduced by equation (2.22), ought to be lin-
early independent in this case). The precise form of the density profiles might

32
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2.3 Brownsberger-Randall Model 33

look differently, but the system of equations used would only need to be adjusted
slightly.
Figure (2.7) is equivalent to figure (2.6), but for the general case: The blue curve
is, again, obtained by directly taking the derivative of the pressure (as defined by
2.38). The red curve is a result of plugging the two definitions for pressure and
density (as defined by 2.38 and 2.37) into the right-hand side of

∂iP̂/∂iν̂(r̂) = −
P̂ + ρ̂e

2
(2.42)

The curves are normalized to intersect at ν[r] = 0.1, to account for any erro-
neous prefactors. If the approach by Ruffini et alii is correct, the two curves should
be identical.

Figure 2.7: comparisons of the (normalized) value for the pressure gradient between
Fermi and GR derivations. β0 = 0.1; θ0 = 0.2

As one can see, the two curves do not coincide, which means that, for this
specific model, the description of the galactic matter as fermi gas is not reconcil-
able with the derivation from GR. In other words, in the general case, the profiles
violate energy-momentum conservation.

2.3 Brownsberger-Randall Model

The third model under consideration here, is the Brownsberger-Randall (BR) Model
after its originators. First, we will rederive the model, as done by Brownsberger et
Randall [28], and then analyse its limitations.

The BR-model is produces a dark matter and stellar probability density profile
via maximum likelihood estimation, assuming

• Dark matter, comprised out of a halo and a disk
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– Halo: A parametrizable spheroidal dark matter density profile (includ-
ing a cut-off radius); parametrized by the total mass, scale radius, ellip-
ticity, polar axis orientations and spatial offset from the galactic center

– Disk: A hyperbolic, secant disk; parametrized by the total mass, scale
radius, scale height, polar axis orientation and spatial offset from the
galactic center

• Tracer: spheroidal symmetry; Isotropic and constant velocity dispersion;
fixed angular velocity

• Binning such that the number of stars in each bin are Poisson distributed

• Availability of stellar positions (x, z) and velocity data vLOS(x, z).

2.3.1 Model

Contrary to the two previously introduced models, the BR-model considers both
the galaxy’s dark matter and tracer components.

Parametrizing halo and disk probability density

The total dark matter in the galaxy under consideration is modelled to be com-
posed of a disk and a spheroidal halo. Three choices for the spheroidal dark mat-
ter halo density profile are given by Brownsberger et Randall. They are parametrized
by a scale radius rs, the total halo mass Mh and the ellipticity of the halo Q. For the
halo mass to be finite, a cut-off c is introduced, where the density discontinuously

falls to 0 and crs is equal to the cosmological Virial radius
(

Mh
4π
3 Q(crs)3 = ∆cρcrit,0

)
.

ρhalo =
Mh

4πQr3
s


1

f (c)m′(1+m′)2 (NFW)
1

h(c)(1+m′)3 (Acored)
1

g(c)(1+m′)(1+m′2) (Burkert)
(2.43)

with

m′2 =

(
R
rs

)2

+

(
z

rsQ

)2

f (c) = ln(1 + c)− c
1 + c

h(c) = ln(1 + c)− 2c + 3c2

2(1 + c)2

g(c) =
1
2
(ln(1 + c) + arctan(c))
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2.3 Brownsberger-Randall Model 35

where R refers to the radial distance and z to the height in cylindrical coordi-
nates. The disk (consisting of baryons and dark matter) is modelled as a hyper-
bolic, secant disk in accordance with Robin et alii [29]:

ρdisk =
Md

8πR2
dzd

exp
(
− R

Rd

)
sech

(
z

2zd

)
(2.44)

which is parametrized by the total mass Md, a scale radius Rd and scale height
zd.
Additional parameters are hc and dc, the vectorial halo and disk offset from the
center respectively, and (φ, θ) and (b, a), the relative orientation of the halo and
disk polar axes with respect to the observer’s coordinate system respectively. In-
stead of Md and Mh, disk and halo total mass, two new parameters are intro-
duced: the total galactic mass M and ε, with ε = Md/M. Instead of zd, the di-
mensionless parameter λ = zd/Rd is used. The parameter space is then defined
by

Θ = (M, rs, Q, φ, θ, Rd, ε, λ, b, a, hc, dc) (2.45)

With fixed set of parameters Θ, ie knowledge of ρhalo and ρdisk, one can determine
the potential via

∇2Φ(x) = −4πGρ(x) = −4πG(ρhalo(x) + ρdisk(x)) (2.46)

Finding the stellar probability density

Like the dark matter particles, the galaxy’s tracer components also obey Jean’s
equations. Since spheroidal symmetry was assumed for the stellar components,
it is useful to employ the corresponding Jeans equations, as derived by Binney et
Tremaine [11] (here, ρ∗ will be treated as the tracer matter density - see footnote
on page 15. The superscript ∗ for the velocity moments is implied)

∂ρ∗vR

∂t
+

∂ρ∗v2
R

∂R
+

∂ρ∗vRvz

∂z
+ ρ∗

(
v2

R − v2
z

R
+

∂Φ
∂R

)
= 0 (2.47)

∂ρ∗vz

∂t
+

∂ρ∗vRvz

∂R
+

∂ρ∗v2
z

∂z
+

ρ∗vRvz

R
+ ρ∗

∂Φ
∂z

= 0 (2.48)

The following assumptions are then made:

• the usual assumption of a static model ∂ f
∂t = 0

• isotropic velocity dispersion: σ2
φ = σ2

R = σ2
z = σ2

• constant velocity dispersion σ2(R) = σ2
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• free streaming in φ-direction only: vR = vz = 0

• fixed angular velocity: vφ = ωR

which simplifies the model:

σ2 ∂ρ∗

∂R
− ρ∗

(
ω2R− ∂Φ

∂R

)
= 0 (2.49)

σ2 ∂ρ∗

∂z
+ ρ∗

∂Φ
∂z

= 0 (2.50)

This can be solved to yield a two-parameter density profile for stellar matter,
which in addition also depends on the gravitational potential (which, in turn, is
described by the gravitationally dominating dark matter component - see equa-
tion(2.46)):

ρ∗(R, z) = C exp
(

ω2R2

2σ2 −
Φ(R, z)

σ2

)
(2.51)

!!!
With a given expression for Φ(R, z), the parameters of the stellar model can

be fixed with observational data (note that, for an isotropic system, σ2
LOS = σ2),

i.e. line-of-sight velocities and stellar position data. The velocity dispersion σ2
A

and angular velocity ω2
A of population A.

σ2
A =

1
NA

∑
n∈A

(
< v′r >A −v′r,n

)2 (2.52)

(ωA, wy,A) = argminp1∈R,p0∈R

(
∑

n∈A

1
σ2

vr,n

(v′r,n − (p1Rn + p0))
2

)
(2.53)

where p1 and p0 are fitting parameters and Rn is the distance of the nth star
from the symmetry axis.wy is the y-component of the star’s proper motion and
v′r,n represents the line of sight velocity of the nth star, with the effect of proper
motion corrected for.
After finding the best-fit parameters, and with the form of the (dark matter dom-
inated) gravitational potential known (Φ being parametrized by θ), one can cal-
culate the projected stellar surface probability density S(xsky, zsky, Θ) (ρ∗ is cal-
culated as a set of finite points and thus S(xsky, zsky, Θ) is approximated using a
Riemann sum) - see figure 2.8, for description of the coordinate system.

S(xsky, zsky, Θ) =
∫ ∞

−D
ρ∗(xsky, ysky, zsky, Θ) (2.54)

36

Version of July 14, 2020– Created July 14, 2020 - 15:23



2.3 Brownsberger-Randall Model 37

Figure 2.8: coordinate system under consideration. The background image of the NGC
4414 Galaxy was taken from [30]

Fitting probability density to data

Before, velocity measurements were used to fix the two parameters of ρ∗, now
position data is used to constrain Φ (and thus also ρ∗). The probability to detect
a star an position (x, z) is O(x, z, Θ), with

O(x, z, Θ) =
S(x, z, Θ)D(x, z, Θ)∫

sky dx′dz′S(x′, z′, Θ)D(x′, z′, Θ)
(2.55)

where S(x, z) is the projected stellar surface probability density. D(x, z) is the
probability that the observer O detects a star at position (x, z) and is calculated by
considering the position dependent fraction of observed stars (i.e. those for which
good vLOS were measured) to candidate stars. In the following, the three DM
halo models are considered separately and the best fit parameters for each found.
After this one can compare the best fit profiles for NFW, Acored and Burkert and
determine which of these fit the data the best.
The sky area of the galaxy (containing N∗ stars) is divided into N bins of area
A. The probability, for an assumed stellar distribution O(x, z, Θ), of observing a
number ni of stars in bin i is assumed to follow a Poisson distribution

Li(ni|O(Θ), N∗) =
e−N∗,i(N∗,i)ni

ni!
(2.56)

N∗,i = N∗
∫

bini
dx′dz′O(x′, z′, Θ)

∼ N∗O(xi, zi, Θ)A
(2.57)

If the bin size is reduced enough until every bin contains either 0 or 1 star,
then the combined likelihood over all observed stars is

L(n|O(Θ), N∗) =
N

∏
i=1
L(ni|O(Θ), N∗)

= e−N∗(N∗A)N∗ ∏
(x∗,z∗)

O(x∗, z∗, Θ)
(2.58)
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with (x∗, z∗) representing the sky coordinates of the stars. The relative like-
lihood gives a measure for the relative fit quality of a model/parameter set Oθ1
with respect to a model/parameter set Oθ2.

r12 =
L1

L2
=

∏(x∗,z∗) Oθ1(x∗, z∗)

∏(x∗,z∗) Oθ2(x∗, z∗)
(2.59)

Using bootstrapping set, i.e. randomly selecting N∗ stars out of the original
data set with replacement, one can repeat this analysis for these artificial galaxies
and can thus determine the robustness of the measure r12. After choice of a DM
model, a Markov Chain Monte Carlo (MCMC) is used to find the best fit param-
eters via a series of random walks through the parameter space. After each step
the likelihood ratio r12 between old and new points is determined and compared
to a random number between 0 and 1. The new point is rejected if the ratio is
smaller than the random number. This analysis is repeated six times: for each of
the three models, with and without a disk.

Results

We will, in the following, cite the results of the fitting algorithm, i.e. list the values
Brownsberger et Randall recover as best-fit parameters.
Figure (2.9) lists those best-fit parameters for various dark matter density profiles,
all of them considering a dark matter mass distribution found in both halo and
disk ρDM = ρhalo + ρdisk. As suggested by the non-zero best-fit value of ε, placing
a small amount of matter in the disk improves the fit. Nevertheless, the value
for ε is very small, leading to the parameters associated with the disk to have
little impact on the overall fit quality. The value for the total galactic mass M
converges to the outer region of the parameter space, suggesting that the true
best-fit parameter for M is larger than allowed by the MCMC algorithm upper-
limit for M. The fit-results for the halo without disk suggest that the halo is cored,
as the Acored profile is always a better fit than the NFW profile. There also seems
to be a preference for the Acored profile over the Burkert profile. [28]

2.3.2 Validity

Similarly to the RSU-Model, the main limitations of Brownsberger-Randall model
lies in its narrow assumptions. The stellar velocity dispersion is not only thought
to be isotropic, but constant with radius (which is more limiting than the assump-
tion made for the RSU-model). Besides this, the angular velocity of the tracer is
also fixed to be constant. It’s main improvement over other attempts at fitting
density profiles to velocity data, is the idea that some of the dark matter content
might be found in a disk and a spheroidal halo, rather than in a spherical halo
alone. However, while the parameter ε describing the amount of matter situated
in the halo is non-zero, the existence of a disk does not greatly improve the fit
quality in general.

38
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2.3 Brownsberger-Randall Model 39

Figure 2.9: Best fit parameters for various dark matter density profiles, all of them in-
cluding both a halo and a disk. Taken from [28]

Looking at the values for the log-likelihood in figure (2.9), initially casts doubt
on the validity of the best-fit parameters (for a good fit, L over the number of
categories k L/k ∼ 1). However, the situation might be easily remedied: With a
typical value of e21421 for the renormalized likelihood L, we have, for L:

L = e−N∗(N∗A)N∗ ∏
(x∗,z∗)

O(x∗, z∗, Θ) (2.60)

L = ∏
(x∗,z∗)

O(x∗, z∗, Θ) = e21421 → L = e21421−N∗(N∗A)N∗ (2.61)

With N∗ = 2498, we can estimate A, the area of the bin, using two extreme
cases: In this way, the value for A is found to lie between 1.5996 ∗ 10−11pc2 (pro-
jected area for a typical RG star) and 142.659pc2 (total projected area of the galaxy
divided by the number of stars). With these estimates, the likelihood L divided
by the number of categories k gives a value between 6.412 ∗ 10−16 and 96.322,
which includes the ideal case of L/k ∼ 1. Specifically, for an area of 1.55397pc2

we have L/k ∼ 1.
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Chapter 3
Lower mass bound with parametrized
dark matter models

We will now derive lower mass bounds for fermionic dark matter particles in
LG dwarf Spheroidals based on the Tremaine-Gunn bound and a simple fitting
procedure. Similar to the approach of Brownsberger et Randall, the following mod-
els assume a parametrized dark matter density profile and fit it to observational
data.
In both cases, the dark matter profile assumes some expression, which is well-
motivated by previous literature in the field. Brownsberger et Randall [28] choose a
stellar density profile which is a solution to the spheroidal, isotropic Jeans equa-
tions. The thereby constructed set of parameters predicts values for line-of-sight
velocities, angular velocities, and projected number densities. These can be used
to find the best-fit set of parameters. Richardson et Fairbairn [15], as well as Read
et Steger [14], choose parametrized stellar density and anisotropy profiles, which
predict values for line-of-sight velocities and Virial shape parameters (i.e. higher
order line-of-sight velocity moments).

3.1 Richardson-Fairbairn profiles

The Richardson-Fairbairn (RF) model [15], yields a dark matter profile (set to
describe the Sculptor dSph) based on maximum likelihood estimation and using
Virial shape parameters, assuming

• spherical symmetry

• a parametrizable expression for dark matter density profile ρDM(r) (e.g.
Zhao parametrization), stellar density profile ρ∗(r) (here: one parameter
Plummer profile) and stellar anisotropy parameter β(r) (e.g. constant)

• a set of line-f-sight velocity measurements vz,i (moments of the stellar ve-
locity distribution) and projected radii Ri
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Virial shape parameters

For this approach, one refers to the definition of the Virial equations, as defined
in section (1.2.4) (The superscript ∗, denoting affinity to the stellar distribution,
for the velocity moments, for the projected density Σ, and for the anisotropy pa-
rameter is implied):

3
∫ ∞

0
Σ(R)v2

LOS(R)RdR = 2
∫ ∞

0
ρ∗

dΦ(r)
dr

r3dr (3.1)∫ ∞

0
Σv4

LOSRdR = 2
∫ ∞

0
ρ∗v2

r

(
1− 2

5
β

)
dΦ
dr

r3dr (3.2)∫ ∞

0
Σv4

LOSR3dR = 2
∫ ∞

0
ρ∗v2

r

(
1− 6

7
β

)
dΦ
dr

r5dr (3.3)

The left-hand-sides are associated with weighted averages (over the entire
radial space) for the quantities v2

LOS, v4
LOS and v4

LOSR2 (denoted by brackets 〈〉 in
the following)
This lets us construct the Virial shape parameters:

ζA =
〈v4

z〉
〈v2

z〉2
=

9Ntot

10

∫ ∞
0 ρ∗(5− 2β)v2

r
dΦ
dr r3dr

(
∫

ρ∗ ∂Φ
∂r r3dr)2

(3.4)

ζB =
〈v4

zR2〉
〈v2

z〉〈R2〉
=

9N2
tot

35

∫ ∞
0 ρ∗(7− 6β)v2

r
dΦ
dr r5

(
∫

ρ∗ ∂Φ
∂r r3dr)2

∫
ΣR3dR

(3.5)

Upon knowledge of the theoretical parameters governing density profiles and
anisotropy parameter, the right-hand-side of these equations can be reconstructed
easily. The expression on the left-hand-side is used to derive the shape param-
eter from data. One differentiates between “true” (i.e. derived from theoretical
parameters) shape parameters ζ̂ and those derived from data ζ̂.

ζ̂A = Ns
∑Ns

i v4
z,i

(∑Ns
i v2

z,i)
2

(3.6)

ζ̂B = N2
s

∑Ns
i v4

z,iR
2
i

(∑Ns
i v2

z,i)
2 ∑Ns

i R2
i

(3.7)

Experimental errors introduce a bias between predicted and measured shape
parameters, ζ̂ − ζ. Richardson et Fairbairn attempt to reconstruct this bias from
simulated data provided by the Gaia challenge test data set (here for a galaxy the
same size as Sculptor) [31]. For various parameter sets, this relation is obtained
by fitting a power law to the ζ̂(ζ) curve (see figure 3.1).
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3.1 Richardson-Fairbairn profiles 43

Figure 3.1: Data points for biased (i.e. inferred from observation) ζ̂ and unbiased ζ shape
parameter estimators as inferred from the Gaia challenge test data. Different values for ζ
correspond to differences in the underlying parameter set. The red line corresponds to a
truly unbiased estimator, the dashed line to the power law. This image was taken from
[15]

Standard Jeans analysis + Virial estimators

The method, following Richardson et Fairbairn, builds upon a standard Jeans anal-
ysis, i.e. a maximum likelihood estimation effectuated by fitting parametrized
density and anisotropy profiles to line-of-sight velocity data aided by Jeans-equations.
The analysis involves steps of different methodology.

• Analytical To perform the fit, parametrizable models for stellar density, DM
density and stellar anisotropy parameter are chosen:

ρ∗(r) =
ρ∗0( r

r∗
)γ∗ [1 + ( r

r∗ )
α∗
](β∗−γ∗)/α∗

(3.8)

ρDM(r) =
ρ0(

r
rd

)γd
[
1 + ( r

rd
)αd

](βd−γd)/αd
(3.9)

β(r) = (β∞ − β0)
r2

r2
β + r2

+ β0 (3.10)

The density models are termed Zhao profiles, the anisotropy parameter is
restricted such that it decreases/increases monotonically between β0 and
β∞. Upon choice of a set of parameters p, we can infer the radial velocity
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dispersion from the stellar Jeans equation (again, the superscript ∗ for the
velocity moments, the projected density Σ, and the anisotropy parameter is
implied)

∂

∂r
(v2

r ρ∗) +
2
r

ρ∗v2
r β = −ρ∗

∂Φ
∂r

(3.11)

which in turn lets us predict a value for the line-of-sight velocity dispersion
(see equation (1.34)):

Σ(R)v2
LOS(R) = 2

∫ ∞

R

(
1− β(r)

R2

r2

)
ρ∗(r)v2

r (r)r√
r2 − R2

dr (3.12)

and projected 2D mass density (due to Merrifield et Kent [17])

Σ(R) = 2
∫ ∞

R
ρ∗(r)

rdr√
r2 − R2

(3.13)

• From data A data set of projected radii and line-of-sight velocities d =
(Ri, vz,i) is needed. The variance of vz,i at fixed radii is then used as the
measured dispersion S2,i

• From simulations Using the chosen parameters, data is simulated and anal-
ysed via bootstrapping. This allows us to obtain values for the variance of
the velocity dispersion Var[S2,j] and, similarly to the process described in
the previous subchapter, a bias on the mean of the S2,i distribution: bi =

Mean[S2,i]− v2
z(Ri|p)

All of these steps allow for the likelihood value to be calculated via

L(d|p) =
Nb

∏
j

1√
2πVar[S2,j]

exp

(
−
[S2,j − v2

z(Rj|p)− bj]
2

2Var[S2,j]

)
(3.14)

The new approach due to Richardson et Fairbairn is now to include information
on the Virial shape parameters as a consistency check and to further constrain the
model. With the measured data, one can construct the Virial shape parameters,
using expressions (3.6) and (3.7). Since one has a set of presumed parameters p,
one can also calculate these parameters, purely from theory, using expressions
(3.4) and (3.5). Taking the bias that was inferred from simulations into account,
one can compare the Virial shape parameters from data and from parameters and
thus obtains an independent constraint that can be used to break mass-anisotropy
degeneracy

44

Version of July 14, 2020– Created July 14, 2020 - 15:23
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Results

Richardson et Fairbairn apply their analysis to the Sculptor dSph, with data pub-
lished by Walker et alii [32]. In the first instance, the velocity anisotropy was cho-
sen to be constant, the stellar density to follow a simple Plummer profile and the
dark matter density profile to either take the form of a Burkert or NFW profile:

ρDM,Burkert(r) =
ρ0r3

s
(rs + r)(r2

s + r2)
(3.15)

ρDM,NFW(r) =
ρ0r3

s
r(r2 + r2

s )
(3.16)

Then rs, β, and ρ0 are varied to find the best fit to the data. The median,
1σ, and 2σ confidence intervals, resulting from a fit of (restricted to be constant)
anisotropy parameter to line-of-sight velocity data are displayed in figure (3.2)
(blue regions).

Figure 3.2: Results of Jeans analysis+Virial shape parameters for Sculptor with constant
anisotropy profile. The top row of plots gives results for the Burkert profile, the bottom
row results for the NFW profile. The first (second) column plots Virial shape parameter
ζA (ζB) vs the - restricted to be constant - stellar anisotropy parameter β. The green
shaded regions describe the measured (and bias corrected) Virial Shape parameters. The
blue shaded regions describe β as inferred from LOS data. The black lines give the result
of the remaining free parameter, scale radius rs, on the theoretical Virial shape parameter.
Taken from [15]

From data, we can also infer the measured Virial shape parameters to be
ζ ′A = 3.43 and ζ ′B = 3.69 (this is without the correction via the bias from simula-
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tions. The green regions in figure (3.2) represent the bias corrected Virial shape
parameters). ζ ′A and ζ ′B are, therefore, derived purely from data, without explic-
itly varying and fitting any parameters. The Virial shape parameters are useful in
this case, since they are normalized to be independent of ρ0, reducing the num-
ber of degrees of freedom and leaving only the scale radius rs and anisotropy
parameter β as free parameters. With β fixed from LOS-data, the black lines in
the following graph show the effect of scale radius on the theoretical ζA and ζB.
For the parametrization to make sense for Sculptor, they should pass through the
red squares.
For the next step, the same Plummer and NFW/Burkert profiles (free param-
eters: scale radius and core density) were chosen by Richardson et Fairbairn for
the tracer and DM distribution respectively. However, the velocity anisotropy
parameter now follows equation (3.10). By varying the five different parameters,
they obtain a range of χ2 values that are plotted against the core radius (see figure
(3.3)).

Figure 3.3: χ2 vs rs plots, representing the fit result with non-constant anisotropy param-
eter. In the first panel, only the dispersion data was used for the fit, in the second panel
ζA was added to the analysis and finally, dispersion + ζA + ζB data were used in the third
panel. The different colors refer to different dark matter density profiles. Taken from [15]

The best fit for the scale radius narrows down, as we begin to include Virial
shape parameters. The left-most panel of figure (3.3) is a typical example for the
ρ − β-degeneracy problem: Without Virial shape parameters, both NFW (blue
dots) and Burkert (green dots) profile deliver good fit results to dispersion data
alone. The right-most panel shows that inclusion of both Virial shape parameters
enables distinction between the two density profiles, with the NFW being a better
fit than the Burkert profile (see [15]). This suggests that the ρ− β-degeneracy can
be broken with Virial shape parameters.

3.1.1 Comparison to Read-Steger profiles

Before calculating the mass bounds for these profiles, we will first discuss the
slight differences between the method of Richardson et Fairbairn and the Read-
Steger (RS) profile [14]. As can be inferred in table (3.1), the main difference in
the two approaches lies in the description of the bias and the definition of the
Virial estimators. Figure (3.4) shows the difference in performance of the two
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methods. The closer the data points are to the dashed line (true VSP) the more
accurate the estimator. [14]
As can be inferred, the higher the number of simulated stars, the more accurate
the estimator. However, for cusped profiles and the second Virial estimator, there
is a significant difference between the true Virial shape parameters and those de-
rived by either method. This holds true, even for a high number of simulated
stars. We assume that these errors are related to a comparatively poor data recon-
struction quality at larger radii specifically. This is because cusped profiles and
the second Virial shape parameter (goes as a sum over v4

zR2 as opposed the first
Virial shape parameter, which goes as a sum over v4

z) are expected to be more
sensitive to data at larger radii.!!!

Figure 3.4: VSP/VSPtrue for RF (circular data points) and RS (square data points) models
for two Gaia Challenge mock data sets (NonPlumCoreOm and NonPlumCuspOm). The
blue (green) data points refer to the performance of the first (second) Virial estimator.
There is a small vertical offset for discernibility. Taken from [14]
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m
et

ho
d

The underlying method is based on a standard Jeans analysis in
both cases. The parametrized profiles are used to predict line-of-
sight velocities and Virial estimators (see below).

.

es
ti

m
at

or

Virial shape parameters

ζA = 9Ntot
10

∫ ∞
0 ρ∗(5−2β)v2

r
dΦ
dr r3dr

(
∫

ρ∗ ∂Φ
∂r r3dr)2

= Ns
∑Ns

i v4
z,i

(∑Ns
i v2

z,i)
2

ζB =
9N2

tot
35

∫ ∞
0 ρ∗(7−6β)v2

r
dΦ
dr r5

(
∫

ρ∗ ∂Φ
∂r r3dr)2

∫
ΣR3dR

= N2
s

∑Ns
i v4

z,iR
2
i

(∑Ns
i v2

z,i)
2 ∑Ns

i R2
i

.

Velocity moments
vs1 = 2

5

∫ ∞
0 ρ∗(5− 2β)v2

r
dΦ
dr r3dr

=
∫ ∞

0 Σv4
zRdR

vs2 = 4
35

∫ ∞
0 ρ∗(7− 6β)v2

r
dΦ
dr r5dr

=
∫ ∞

0 Σv4
zR3dR

Note that the Virial shape parameters sum over the observational
data points to obtain the averages, whereas the velocity moments
integrate over the data points (requiring an interpolation curve to
the data points) to do the same

.

bi
as

The quantities ζ̂A and ζ̂B are cal-
culated from v2

z and v4
z data (equa-

tions (3.6) and (3.7)) using summa-
tion. After choice of a parametriz-
able model, one can calculate ζA
and ζB (equations (3.4) and (3.5)).
With the same choice of parame-
ters, one simulates galaxies with
the same ζA and ζB. The measured
values ζ̂A,sim and ζ̂B,sim are used to
infer the bias ζ̂A,sim − ζA
and ζ̂B,sim − ζB. The bias is then
fit with a power law such that one
obtains the relations ζ̂A,sim(ζA) ≈
ζ̂A(ζA) and ζ̂B,sim(ζB) ≈ ζ̂B(ζB)
(see figure (3.1)) which, for the
actual observation, are considered
when fitting the values ζA and ζB
to ζ̂A and ζ̂B.

.

The quantities vs1 and vs2 are di-
rectly calculated from v4

z data (eq
(3.2) and (3.3), lhs) using numeri-
cal integration over Σ. Errors on vs1
and vs2 are directly considered via
Monte Carlo sampling, by adding
errors from simulations to the v4

z
data in order to obtain vs1∗ and
vs2∗ After choice of a parametriz-
able model, one can calculate vs1
and vs2 (eq (3.2) and (3.3) rhs). The
fit is realised with vs1∗ and vs2∗ (i.e.
the errors already accounted for)
and vs1 and vs2

Table 3.1: Comparison of methods by Richardson et Fairbairn and Read et Steger
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3.2 Mass bounds 49

3.2 Mass bounds

With data generated from the Read-Steger model (see figures (3.5) and (B.1)), one
can calculate lower mass bounds for the dark matter particle using the Tremaine-
Gunn bound outlined in section (1.1). We approximate the phase-space density
via coarse graining as described in section (1.1):

FDM =
ρ(r)

mDMV(r)ms
(3.17)

with V(r)ms as the volume in momentum space ( approximated by 4
3 πp3

max =
4
3 πm3

DMv3
esc), one obtains the lower mass bound for a dark matter particle as a

consequence of the Tremaine-Gunn bound:

mDM ≥
(

h̄36π2ρ(r)
gv3

esc(r)

)1/4

(3.18)

3.2.1 Profiles

The density and mass profiles constructed from data from the Read-Steger pro-
files (see figure (3.5) and (3.6) extend only to a radius of about 1.5 kpc. Not con-
sidering the enclosed mass past this radius Redge might lead to significant under-
estimation of the escape velocity. For this reason, we elect to extend the density
and mass profiles via extrapolation.

Figure 3.5: (left) LeoI dark matter density profile, (right) LeoI dark matter mass profile
from data provided by Read et alii with (68%, 95% and 99%) confidence intervals. For
the mass profile, the shaded regions signify the 3D half-light radius and half-light radius
enclosed mass as reported by Wolf et alii [10]. The yellow shaded region marks the region
of lowest relative error in the mass profile, which, following the theory of Wolf et alii
should enclose the half-light radius. This is clearly the case here
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Figure 3.6: (left) stellar mass profile of the Carina dSph. Like in figure 3.5, the yellow
shaded region marks the region of lowest relative error in the mass profile and the gray
region the region containing the half light radius. (right) log-log slope of the density
profile for the Carina dSph from data provided by Read et alii. The point where the slope
yields -3 is marked by the dashed red line. According to the theory of Wolf et alii [10],
this radius should be close to the half-light radius (gray dashed line within gray region)
which itself should lie within the region of minimal error for the dark matter density
profile (orange dashed line within orange region). Clearly, the data aligns with what the
theory demands of stellar and density profiles

The extension of the profiles is effectuated as follows. Based on figure (3.10)
for the log-log slopes associated with the dark matter density and enclosed mass,
we can infer that the slopes approach a constant value at outer radii. This con-
stant value is approximated by taking the average value of the slope between 0.9
Redge (red line) and Redge. This is done for both median profiles and confidence
intervals. The profiles are then extended simply by extrapolating this approxi-
mately constant log-log slope up until a new Redge of our choosing.

Figure 3.7: (left) median log-log slope (right) 68% low log-log slope for Carina. The mass
profile is given in blue, whereas the density profile is given in orange. As an example,
the median log-log slope of the mass profile approaches a constant value of 1.244

To achieve a sufficiently broad range for the profiles, one choice of Redge is the
Virial radius, which depends on the dark matter density profile via:
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ρ(rvir) = ∆cρc = ∆c
3H(t)2

8πG
∼ 200 · 136.4599 (3.19)

Another is to extend the radius up until 100kpc, which leads to a very con-
servative estimate of the escape velocity, as this is more than the typical separa-
tion between most LG dSphs. In the following, all three choices for Redge will be
considered: a) the original radius of about 1.5kpc without any extrapolation, b)
extrapolation up until the Virial radius, and c) extrapolation up until 100 kpc.

3.2.2 Bounds

The squared escape velocity v2
esc(r) (see figure (3.8)) becomes:

v2
esc(r) = 2G

∫ Redge

r

M(r′)
r′2

dr′ +
2GM(Redge)

Redge
(3.20)

Figure 3.8: LeoII escape velocities with data provided by Read et alii

The squared escape velocity is linear in the mass data. Since the errors at
different radii have to be assumed to be correlated, we impose conservative error
estimates:

σv2
esc
(r) = 2G

∫ Redge

r

σM(r′)

r′2
dr′ +

2GσM(R f in)

Redge
(3.21)

Where σ stands for the confidence interval width at the chosen confidence
level and for the respective variable. For e.g. the 95% confidence interval in
v2

esc(r) (i.e. [v2
esc(r)− σv2

esc,95low(r), v2
esc(r) + σv2

esc,95high(r)), we have:

σv2
esc,95high(r) = 2G

∫ Redge

r

σM(r′),95high

r′2
dr′ +

2G · σM(R f in),95high

Redge
(3.22)
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Figure 3.9 shows how extending the radius changes the median escape veloci-
ties. As can be inferred, the density drops more quickly for LeoII than for Carina,
since the escape velocity does not change as drastically when considering con-
tributions from higher radii. This suggests higher accuracy of escape velocities
calculated for LeoII.

Figure 3.9: Escape velocities for Carina (left) and LeoII (right) for profiles extended to
different radii: red for the original Redge, blue for the Virial radius, and green for 100kpc

Using the coarse grained estimate for the lower mass bound described in sec-
tion (1.1) and conservative error estimates, one derives:

m(r) =

(
h3

2
ρ(r)

4
3 π(v2

esc)
3/2

)1/4

(3.23)

σm,low(r) = m(r)−
(

h3

2
ρ(r)− σρ,low(r)

4
3 π(v2

esc(r) + σv2
esc,high(r))3/2

)1/4

(3.24)

σm,high(r) = −m(r) +

(
h3

2
ρ(r) + σρ,high

4
3 π(v2

esc(r)− σv2
esc,low(r))3/2

)1/4

(3.25)

which yields a lower bound at every radius (figure (3.10) and appendix C).

Figure 3.10: Lower mass bound for LeoII from data provided by Read et alii. The black
line highlights the radius 0.4r12, the dashed line the half-light radius r12
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radius mass bound from local ρ
Redge= orig. Redge=rvir Redge= 100kpc

Carina at Rstart 0.2310.244
0.095 0.1620.251

0.074 0.1300.263
0.066

at 0.4r12 0.1630.051
0.034 0.1120.072

0.032 0.0900.086
0.032

at r12 0.1260.034
0.022 0.0840.052

0.022 0.0670.062
0.022

Draco at Rstart 0.1890.117
0.051 0.1600.117

0.056 0.1440.120
0.063

at 0.4r12 0.1500.027
0.025 0.1260.033

0.033 0.1130.038
0.041

at r12 0.1200.016
0.015 0.0990.022

0.024 0.0890.027
0.030

LeoI at Rstart 0.2020.256
0.084 0.1830.260

0.082 0.1660.269
0.084

at 0.4r12 0.1380.039
0.030 0.1240.046

0.033 0.1120.055
0.039

at r12 0.1050.026
0.019 0.0930.033

0.023 0.0830.040
0.027

LeoII at Rstart 0.2930.261
0.118 0.2730.262

0.119 0.2560.267
0.127

at 0.4r12 0.2020.047
0.038 0.1870.053

0.045 0.1740.060
0.058

at r12 0.1500.031
0.025 0.1380.036

0.031 0.1270.041
0.041

Fornax at Rstart 0.1160.098
0.037 0.1020.090

0.038 0.0910.084
0.041

at 0.4r12 0.0840.011
0.012 0.0730.011

0.016 0.0650.012
0.020

at r12 0.0680.007
0.008 0.0580.008

0.011 0.0500.009
0.015

Sextans at Rstart 0.2200.264
0.094 0.1930.250

0.087 0.1710.245
0.086

at 0.4r12 0.1180.021
0.018 0.1000.025

0.022 0.0870.029
0.027

at r12 0.0860.024
0.021 0.0680.025

0.021 0.0570.028
0.022

Sculptor at Rstart 0.1540.110
0.040 0.1160.109

0.038 0.0990.112
0.038

at 0.4r12 0.1250.028
0.018 0.0940.036

0.021 0.0800.042
0.023

at r12 0.1030.016
0.011 0.0750.025

0.015 0.0640.029
0.017

UMi at Rstart 0.1810.147
0.053 0.1440.135

0.049 0.1240.133
0.049

at 0.4r12 0.1270.020
0.016 0.1000.025

0.020 0.0850.029
0.023

at r12 0.1010.014
0.014 0.0760.018

0.016 0.0640.021
0.018

Table 3.2: Mass bounds evaluated at three different radii (Rstart near the center, 0.4r12, and
r12) for profiles extended to three different radii (original radius, Virial radius, 100kpc).

Table 3.2 displays mass bounds evaluated at different radii for each of the LG
dSphs under consideration. The most relevant lower mass bound is that derived
for LeoII. By increasing the considered range from around 15kpc to (the rather
unphysical) 100 kpc, one lowers the derived value for LeoII by only 6%, lending
further credibility to the robustness of the estimation.

3.2.3 Corrections

The previous dSph profiles derived by Read et alii model idealized versions of the
galaxies (e.g. spherically symmetric, no tidal stripping by the host galaxy - see
[33]). For this reason, we will attempt to remedy some of the dark matter mass
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bound’s inaccuracies with corrections based on simulations done by Genina et alii
[33].

As a data set, Genina et alii choose the APOSTLE suite simulations of Milky
Way and Andromeda analogue pairs (chosen to satisfy general constraints for
the Local Group galaxies, such as total mass, separation and relative velocities)
with population of dSphs. LG dSphs are considered to be in an instantaneous
steady state. 25 dSphs are selected to match the properties of Milky Way dSphs
(and specifically, Fornax) in terms of

• Stellar masses and number of stars

• Velocity dispersion

• Projected half light radii Re

• Amount of bound gas (none)

• Amount of signs for rotation (little)

• Distance from host galaxy (≤ 300kpc)

• Sphericity s = c/a (ratio of minor to major axes), where Fornax corresponds
to a s = 0.7, with an average of s = 0.9)

Positions and velocities of stars within dSphs are projected along one of either
major, minor and intermediate axis to generate a photometric (random sample of
500− 2500 stars within R2D) and kinematic (all stars within R2D perturbed with
Gaussian noise) data for each star, which is split into bins and analysed using the
process described in section (3.1.1). !!!

Figure 3.11: Results of the RS-model for two model dSphs. Black (grey) represents me-
dian (confidence intervals) for the recovered profiles, whereas blue stands for the “true”
(i.e. simulated) profile. Taken from [33]

See figure (3.11) for examples of the reconstruction of simulated density pro-
files. For galaxy 10, viewed along the minor axis, enclosed mass and reduced
velocity anisotropy β are well recovered. For galaxy 18, also viewed along the
minor axis, a poor recovery of the velocity anisotropy (the method favours radial
anisotropy) leads to an underestimation of the enclosed mass.

A few effects were found to reduce the accuracy of the model:
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• Line of sight effects.
For galaxies viewed along the minor or intermediate axis, enclosed masses
are underestimated (with a factor down to 0.75); for the major axis they are
slightly overestimated (up to 1.25) - see figure 3.12.

Figure 3.12: average ratio of reconstructed masses to true mass for galaxies projected
along the minor (blue), intermediate (red), and major (black) axis. Taken from [33]

Aspherical dwarfs resemble the sample viewed along the major axis, since
a majority of aspherical dwarfs were projected along the major axis. Ex-
cluding heavily aspherical dSphs from the sample of aspehrical dSphs in-
creases accuracy and reduces scatter, suggesting accurate estimation for
those dSph, which can be described as more spherical and which are pro-
jected along the major axis.

• Preference for radially biased anisotropy parameters
The RS model shows preference for radially biased velocity anisotropy when
the true profile is constant.

Poor velocity anisotropy recovery is related to inclusion of Virial shape pa-
rameters, as runs without VSPs show. The first Virial shape parameter
(VSP1) strongly disfavours constant β (VSP2 is sensitive to noisy data in
outer regions due to the R3 term, permitting a wider range of profiles). Still,
inclusion of VSP leads to better performance overall.

• Tidal stripping
Satellites are subject to tidal stripping due to their host galaxies. From simu-
lations Genina et alii infer that tidal stripping causes tangential anisotropies
in outer regions of the galaxy (preferential stripping of radial orbits). LG
dSphs with pericenters closer to the host galaxies lose more of their infall
mass. Severley stripped dwarfs are those with distance below 40 kpc and
more than 70% of stripped mass excluding highly aspherical dwarfs (i.e. as-
phericity effects), we see the effect of tidal stripping. In outer regions, mass
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is overestimated. In the inner regions, tides tend to lead to an underestima-
tion of the enclosed mass (factor of down to 0.8). For this, see figure (3.13).
This is more significant if distance is lowered.

Figure 3.13: Effect of tides on estimation of enclosed mass profile

Consequences for our mass bound

As mentioned before, line of sight effects may lead to overestimation (factor of up
to 1.25 across radial range for major axis projection of highly aspherical dwarfs) or
underestimation (factor of down to 0.75 for intermediate or minor axis projection
across radial range of mass profiles. Tidal stripping leads to an underestimation
(factor down to 0.8 in inner regions) of mass profiles for galaxies < 40kpc. For
dark matter particle lower mass bounds I, therefore, propose a worst-case correc-
tion to enclosed masses of 0.8 for potentially tidally stripped dSphs 0.75 · 0.8 = 0.6
for aspheric, potentially tidally stripped dShs viewed along minor/intermediate
axis 0.75 for aspherical dwarfs viewed along the minor/intermediate axis This
will lead to mtrue, a conservative correction in DM particle lower mass bound m:

Tidally stripped inter./min. axis projection Tidally stripped
+ inter./min. axis projection

m ∼
(

ρ
v3

)1/4
∼
(

M
M3/2

)1/4
∼ M−1/8

M = 0.6Mtrue M = 0.75Mtrue M = 0.8Mtrue

m
mtrue
∼
(

M
Mtrue

)−1/8

mtrue = 0.938m mtrue = 0.964 mtrue = 0.972

Effects leading to overestimation are not considered here, since they only raise
the lower mass bound (these effects would be small for less aspherical dwarfs.
Severely tidally stripped dwarfs (i.e. correction of 0.94) are potentially those with
distance to host galaxy of ≤ 40kpc. All of the dSphs used for the DM particle
lower mass bound are outside this radius (with UMi being the closest at 60kpc) -
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m [keV] m [keV] m [keV]
Read, Steger profile Read, Steger profile Boyarsky et alii

extended extended + LOS correction [8]

Carina 0.1120.072
0.032 0.1070.069

0.031 0.2150.050
0.032

Draco 0.1260.033
0.033 0.1210.023

0.032 0.2260.020
0.016

Fornax 0.1020.038
0.090 0.0980.037

0.087 0.1640.041
0.026

LeoI 0.1240.046
0.033 0.1200.044

0.032 0.1890.059
0.034

LeoII 0.1870.053
0.045 0.1800.051

0.043 0.2690.052
0.035

Sculptor 0.1160.109
0.038 0.1120.105

0.037 0.2640.038
0.031

Sextans 0.1000.025
0.022 0.0960.024

0.021 0.1470.044
0.026

UMi 0.1440.135
0.049 0.1390.130

0.047 0.1950.051
0.031

Table 3.3: LOS corrected mass bounds for extended (up to Virial radius) profiles, evalu-
ated at either Rstart or 0.4r12, with data provided by Read et alii

see Łokas et alii [34]. We, therefore, apply the correction of mtrue = 0.964m to all of
the dwarfs (see table 3.3).

Finally, we can pose:

mDM ≥ 180 +51
−43 eV (3.26)

For a fermionic dark matter particle.
This is consistent with lower bounds derived with similar methods by other au-
thors (e.g. 190 eV by Savchenko et Rudakovskyi [35] or 269 eV by Boyarsky et alii
[8]).
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Appendix A
Deriving Jeans and Virial equations

A.1 Deriving the 2nd order Jeans equation

The following is a derivation of the 2nd order Jeans-equation, which (similarly
to the derivation of Boltzmann equations, velocity moments, and all other Jeans
equations) closely follows Binney et Tremaine [11]. The 2nd order Jeans equation in
spherical coordinates is obtained by integrating the spherical Boltzmann equation
(see equation (1.14)) over d3p:

∂

∂t

∫
f prd3p +

∂

∂r

∫
p2

r f d3p +
1
r2

∂

∂θ

∫
pθ f prd3p

+
1

r2 sin2 θ

∂

∂φ

∫
f pφ prd3p−

∫
(

∂Φ
∂r
−

p2
θ

r3 −
p2

φ

r3 sin2 θ
)

∂ f
∂pr

prd3p

−
∫
(

∂Φ
∂θ
−

p2
φ cos θ

r2 sin3 θ
)

∂ f
∂pθ

prd3p−
∫

∂Φ
∂φ

∂ f
∂pφ

prd3p = 0

(A.1)

The last two integrals in equation (A.1) evaluate to zero, as they can be rewritten
purely in terms of surface integrals. Using equations (1.19):

∂

∂t
ρr2 sin θpr +

∂

∂r
p2

r ρr2 sin θ +
∂
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sin θρpθ pr

+
1

sin θ
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∂φ
ρpφ pr −

∫
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p2
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p2

φ

r3 sin2 θ
) f d3p = 0

further simplified:

∂

∂t
ρr2 sin θpr +

∂

∂r
p2

r ρr2 sin θ +
∂

∂θ
sin θρpθ pr +

1
sin θ

∂
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+r2 sin θρ
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− sin θ

r
p2

θρ−
p2

φ

r sin θ
ρ = 0

noting that moments of uneven pr (e.g. pr, pr pθ) vanish due to the density func-
tion being an even function of pr; rewriting momentum coordinates with velocity
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66 Deriving Jeans and Virial equations

coordinates; and dividing by sin θ, we arrive at: !!!

v2
r ρ2r + r2 ∂

∂r
v2

r ρ + r2ρ
∂Φ
∂r
− rv2

θρ− rv2
φρ = 0

∂

∂r
v2

r ρ + ρ
∂Φ
∂r

+
1
r

ρv2
r 2(−

v2
θ + v2

φ

2v2
r

+ 1) = 0

A.2 Deriving the Virial equation

We, now, set out to prove equation (1.34).

Figure A.1: Relationships between angles for (left) positions and (right) stellar velocities
(viewed along the z-axis).

Proof. As previously shown and based on [11], the line of sight velocity disper-
sion can be expressed as

v2
||(x⊥) =

∫ ∫
dx||d3v · v2

||(x)ρ(x)Px(v)∫
ρ(x)dx||

=

∫
dx||v2

||ρ(x)

Σ(x⊥)

(A.2)

Note that R ≡ x⊥, as well as vLOS ≡ v||, and xLOS ≡ x|| (see figure (A.1)). With
this justification, these variables will be used interchangeably. Using a coordinate
transformation from coordinate r to x|| (via r2 = x2

|| + x2
⊥) and the relations seen
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A.2 Deriving the Virial equation 67

in figure (A.1), one may rewrite the right-hand side of equation 1.34 as

2
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∫
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(A.3)

Where α is the angle between vr and v⊥, and γ the angle between the radial
and the line-of-sight coordinate. Note that vrvφ = 0. From figure (A.1), we infer:

v|| = |~v| sin (θ + α) = |~v|(cos θ sin α + sin θ cos α) = vr sin α + vφ cos α (A.4)

cos(α) = cos(π/2− γ) = sin(γ) (A.5)
sin(α) = sin(π/2− γ) = cos(γ) (A.6)
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Appendix B
Density profiles

B.1 Density profile comparison

Figure B.1: Comparison of new mass profiles provided by Read et alii (green curves with
99% confidence interval) to those taken from Bondarenko et alii [36] (red curves with the
same confidence interval for several parametrizations)
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Appendix C
Mass Bounds

Black lines refer to a radius of 0.4r12 and dashed lines to the half-light radius r12.

Figure C.1: Carina, mass bounds for a profile extended to a) ca 1.5kpc, b) Virial radius
(ca 15kpc).

Figure C.2: Draco, mass bounds for a profile extended to a) ca 1.5kpc, b) Virial radius (ca
15kpc)
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72 Mass Bounds

Figure C.3: LeoI, mass bounds for a profile extended to a) ca 1.5kpc, b) Virial radius (ca
15kpc)

Figure C.4: LeoII, mass bounds for a profile extended to a) ca 1.5kpc, b) Virial radius (ca
15kpc)

Figure C.5: Fornax, mass bounds for a profile extended to a) ca 1.5kpc, b) Virial radius
(ca 15kpc)
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Figure C.6: Sextans, mass bounds for a profile extended to a) ca 1.5kpc, b) Virial radius
(ca 15kpc)

Figure C.7: Scuptor, mass bounds for a profile extended to a) ca 1.5kpc, b) Virial radius
(ca 15kpc)

Figure C.8: UMi, mass bounds for a profile extended to a) ca 1.5kpc, b) Virial radius (ca
15kpc)
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